Selected Publications of Prof. Chao-Yu Chou

02. Economic specification limits and process mean setting by considering unequal target value and specification center. *Journal of Industrial and Production Engineering* (forthcoming) (TSSCI).

15. Yield measure for the process with multiple streams.
 Quality & Quantity, 43(4): 661-668, 2009 (SSCI).

16. Economic design of variable sampling intervals \bar{X} charts with A&L switching rule using genetic algorithms.

17. A sensitivity study on the bootstrap confidence interval of the capability index C_{pm}.
 Journal of Interdisciplinary Mathematics, 12(6): 785-804, 2009 (EI).

18. An empirical study on the determination of price, warranty length and production rate in the static sales market.
 Journal of the Chinese Institute of Industrial Engineers, 26(2): 126-134, 2009 (TSSCI).

19. Economic design of adaptive \bar{X} control charts for skewed data.

20. A real-time inventory decision system using Western Electric run rules and ARMA control chart.

21. The variable sampling rate \bar{X} control charts for monitoring autocorrelated processes.
 Quality and Reliability Engineering International, 24(7): 855-870, 2008 (SCI).

22. Multiple streams process capability analysis control chart.
 Journal of Information and Optimization Sciences, 29(5): 835-847, 2008 (EI).

23. Economic design of variable sampling intervals EWMA charts with sampling at fixed times using genetic algorithms.

24. Optimal burn-in time and warranty length under fully renewing combination free replacement and pro-rata warranty.
 Reliability Engineering & System Safety, 92(7): 914-920, 2007 (SCI).

25. Non-normality and the variable parameters \bar{X} control charts.

38. Adaptive \bar{x} control charts with sampling at fixed times. *Quality and Reliability Engineering International*, 21(2): 163-175, 2005 (SCI).

40. Robustness of the variable sample size and control limit \bar{X} chart to non-normality.

41. Interval estimation for the smaller-the-better type of signal-to-noise ratio using bootstrap method.

42. Determining the optimum process mean under a lognormal distribution.

43. Determining a one-sided optimum specification limit under the linear quality loss function.

44. On the design of variable sample size and sampling intervals \bar{X} charts under non-normality.

45. On the design of variable sampling intervals \bar{X} charts under non-normality.

46. The modified Ferrell and Chhoker’s model for the optimal inspection policy.

47. Minimum average total inspection of variable lot-size sampling plan for continuous production.

48. An evaluative study on adaptive \bar{X} control charts under various combinations of variable parameters.

49. Set the optimum process parameters based on asymmetric quality loss function.

50. Effect of non-normality on the economic design of warning limit \bar{X} charts.
 Quality Engineering, 16(4): 567-575, 2004 (EI).

51. The effect of correlation on the economic design of warning limit \bar{X} charts.

52. Determining the optimum process mean under the bivariate quality characteristics.
53. Economic-statistical design of multivariate control charts for monitoring the mean vector and covariance matrix.

54. Economic design of CSP-1 plan under the dependent production process and linear inspection cost.
Quality Engineering, 16(2): 239-243, 2003 (EI).

55. The optimum process parameters under the one-sided specification limit.

56. Applying quality loss function in the design of economic specification limits for triangular distribution.

57. Joint design of continuous sampling plans and specification limits.

58. Determining the optimum manufacturing target based on asymmetric quality loss function.

59. Determining the optimum process mean under a beta distribution.

60. Economic specification limits under the inspection error.

61. Tolerance design for a subsystem with unequal specification limits using Taguchi’s quadratic loss function.

62. Economic design of continuous sampling plan under linear inspection cost.

63. Economic-statistical design of multivariate control charts using quality loss function.

64. A review and comparative study on adaptive \bar{X} control charts.

65. A note on the continuous sampling plan CSP-V.
66. Minimum-loss design of \bar{X} charts for correlated data.

67. Determining the optimum process mean for a poor process.

68. A note on selecting target and process capability index based on fuzzy optimization.

69. Determining the optimum process mean of a one-sided specification limit.

70. Economic design of \bar{X} charts for non-normally correlated data.

71. Economic design of Dodge-Romig LTPD single sampling plans for variables under Taguchi’s quality loss function.

72. Application of computer simulation to the design of a traffic signal timer.

73. Minimum average fraction inspected for TCSP-1 plan.

74. Integrating an EMQ model and product quality.

75. Application of quality function deployment in improving teaching quality: a case study.

76. Target selection for an indirectly measurable quality characteristic in unbalanced tolerance design.

77. On the present worth of multivariate quality loss.

78. Design of a continuous sampling plan based on quadratic quality loss function.
79. Minimum-loss assembly tolerance allocation by considering product degradation and time value of money.

80. Bivariate tolerance design for lock wheels by considering quality loss.

81. Economic-statistical design of \bar{X} charts for non-normal data by considering quality loss.

82. CSP-1 plan applied in the economic manufacturing quantity model.

83. Minimum average fraction inspected for CSP-C-1 plan.

84. Design of a CSP-1 plan based on regret-balanced criterion.

85. Economic design of continuous sampling plan under Markov process.

86. A statistical approach for detecting tool breakage in end milling operations.

87. A study on the process capability index C_p for correlated data.

88. Simulation study on the queuing system in a fast-food restaurant.

89. Applying quality engineering technique to improve wastewater treatment.

90. A comparative study on the estimators of standard deviation in statistical process control.

91. A study on the median control chart under non-normality.
92. Application of Taguchi’s parameter design in reducing the inventory cost of lot-size reorder-point model.

93. A proposed standard deviation chart for correlated data.

94. Properties of the half-normal distribution and its application to quality control.

95. Implementing the automated visual inspection in quality control system.

96. Ranges control charts for non-normal data.

98. Non-normality and the standard deviation charts.

99. Expectation of the sample standard deviation.

100. Application of the multi-stage validation procedure in simulating a queuing system.